Board logo

标题: 膜结构新年科普帖 [打印本页]

作者: 自由之思想    时间: 2009-1-2 22:04     标题: 膜结构新年科普帖

膜结构概念、起源和发展
1.1 膜结构概念、起源和发展

  膜结构(Membrane Structure),也即张拉膜结构(Tesioned Membrane Structure),是依靠膜材自身的张拉力和特殊的几何形状而构成的稳定的承力体系。膜只能承受拉力而不能受压和弯曲,其曲面稳定性是依靠互反向的曲率来保障,因此需制作成凹凸的空间曲面,故习惯上又称空间膜结构。

  古老的膜结构在公元前几千年就已经出现,最早是由天然枝条和兽皮搭成的帐篷(Pavilion),然后发展到由铁木和帆布制作成各种各样的形状。但是,从欧洲古罗马帝国、中国汉朝时代到十九世纪末,膜结构几乎处于一个停滞发展的阶段。直到第二次工业革命,化学工业和工程力学迅速发展,高分子合成材料技术得到大力改进,膜材料摆脱茹毛饮血的状况,现代膜结构才开始蓬勃发展。另外,两次世界大战也加快了膜结构的发展。

  1917年美国兰彻斯特建议利用新发明的电力鼓风机将膜布吹胀,作野战医院,但没有真正成为使用的产品。1946年,一位名为贝尔德的人为美国军方做了一个直径 15m圆形充气的雷达罩,由此而衍生出了新的膜结构工业产业。最受人注目的是1967年Frei Otto设计的加拿大蒙特利尔博览会上的西德馆,其以轻质透明有机织片作为顶部结构,开了膜结构商业化的先河。1970年日本大阪万国博览会上一座气承式膜结构的拟椭圆形美国馆(尺寸140×83.5m),首次采用了聚氯乙烯(PVC)涂层的玻璃纤维织物,这是世界上第一个大跨度的膜结构。以后,膜结构象雨后春笋,迅速发展。

  膜结构的发展总是和膜材(Membrane Material)的进步分不开的,下面先介绍膜材料。

  1.2 膜材料的组成和分类

  通俗地讲,膜材就是氟塑料表面涂层与织物布基按照特定的工艺粘合在一起的薄膜材料。常用的氟素材料涂层有PTFE(聚四氟乙烯)、PVDF(聚偏氟乙烯)、PVC(聚氯乙烯)等。织物布基主要用聚酯长丝(涤纶PES)和玻璃纤维有两种。

  膜材的粘合就是将涂层与基材合二为一组成整体。建筑结构所用的膜材大多是以压延成型和涂刮成型的。 所谓压延成型,就是将选定的软PVC经塑炼后投入压延机,按照所需厚度、宽度压延成膜,立即与布基粘合,再经过轧花、冷却即可制得压延膜材。而涂刮成型,则是将聚氯乙烯糊均匀地涂或刮在布基上,再加热处理即可获得涂刮膜材,普遍的是采用刮刀直接涂刮,也有采用辊式涂刮的。

  根据表面涂层(Coating)和织物基材(Layer)不同,膜材料分为三大类。(1)A类膜材是玻璃纤维布基上敷聚四氟乙烯树脂(PTFE),这种膜材的化学性能极其稳定,露天使用寿命达25年以上,为不燃材料(通过A级防火测试)。(2) B类膜材料是玻璃纤维布基上敷硅酮涂层,由于膜材自身性能欠佳,现在基本不再使用。(3 ) C类型膜材料是聚酯长丝布基上涂聚氯乙烯树脂(PVC),这种膜材受自然条件如日晒雨淋等影响较大,一般使用寿命为10年至15年,是难燃材料((通过B1级防火测试)。

  1.3 膜材料的性质

  膜作为继木材、砖石、金属、混凝土之后的第五代建筑结构材料,具有显著的自身特性。第一代木材和第三代钢材拉压性能均良好,第二代砖石和第四代混凝土则只具备良好的抗压能力,作为第五代的膜材料则只能受拉,没有承压和抗弯曲能力,这是膜的最本质的特征。具体地讲,膜材的主要特征如下:

  (1)拉伸性能

  膜材的拉伸性能包括拉伸强度(Tensionn Strength)、拉伸模量(Modulus of Elasticity)和泊松比(Poisson’s Ratio)三个力学指标。膜材本身不能受压也不能抗弯,但具有很高的拉伸强度,所以要使膜结构正常工作就必须引入预拉力、并形成互反曲面。通常膜材料的拉伸强度都可达100MPa以上。

  模材应力-应变关系是非线性的,一般采用切线模量作为弹性模量,膜材的弹性膜量约为钢的1/3左右。膜材的泊松比,即横向变形特征,约为0.2左右。由于膜是双向受力结构,设计时必须以膜材的双轴拉伸实验确定膜的弹性膜量及泊松比。

  (2)撕裂强度

  膜材是张拉结构材料,其撕裂破坏比受拉破坏要严重很多,所以撕裂强度和抗撕裂性能非常重要。PVC涂覆聚酯长丝织物具有中等的撕裂强度,PTFE涂覆玻璃纤维的材料具有较高的撕裂强度。

  (3)正交异向性

  张拉膜结构曲面需要经向和纬向两个主轴方向反向曲率来保证,一个方向的曲率向下凹,另一个方向必须向上凸。传统膜材基材是由经﹑纬向纱线编织而成,因而呈现很强的正交异性性能,经纬向变形能力相差达3-5倍之多。

  (4)蠕变和松弛

  蠕变和松弛是膜材的另一个重要特性,也是膜起皱和失效的重要原因,在裁剪分析和加工时需要考虑这个因素。聚酯长丝织物在使用的头十年里就会因为蠕变丧失50%的预张拉力,相反,玻璃纤维织物要稳定很多。

  (5)非力学性质:安全方面的性质,如耐久性、防火性能、防雷性能等;非安全方面性质,如隔音或音响性能、自洁性能等等。

  由于膜结构的造型要求和膜材自身特性的原因,膜结构设计与其它结构有很大的不同。膜结构设计包括形状确定(“找形”,Form Finding)、荷载分析(Loading Case Analysis)和裁剪分析(Cutting Pattern)等三方面内容,下面分别论述。

插入两个文件,主要为了集中学习,方便查阅

附件: 空间膜结构设计基础知识.doc (2009-1-4 22:43, 37 K) / 下载次数 100
http://okok.org/attachment.php?aid=107092

附件: E9结构及索膜结构施工过程的质量控制.doc (2009-1-4 22:43, 44.5 K) / 下载次数 70
http://okok.org/attachment.php?aid=107093
作者: mibao    时间: 2009-1-2 23:16

张拉膜结构的理念设计  
只有正确表达结构逻辑的建筑才有强大的说服力与表现力”这句话揭示了张拉膜结构的精髓。对于张拉膜结构,任何附加的支撑和修饰都是多余的,其结构本身就是造型;换句话说,不符合结构的造型是不可能的,因为那样的薄膜不是飘动的就是缺乏稳定性的。张拉膜结构的美就在于其“力”与“形”的完美结合。

张拉膜结构的基本组成单元通常有:膜材、索与支承结构(桅杆、拱或其他刚性构件)。

膜材一种新兴的建筑材料,已被公认为是继砖、石、混凝土、钢和木材之后的“第六种建筑材料”。膜材本身不能受压也不能抗弯,所以要使膜结构正常工作就必须引入适当的预张力。此外,要保证膜结构正常工作的另一个重要条件就是要形成互反曲面。传统结构为了减小结构的变形就必须增加结构的抗力;而膜结构是通过改变形状来分散荷载,从而获得最小内力增长的。当膜结构在平衡位置附近出现变形时,可产生两种回复力:一个是由几何变形引起的;另一个是由材料应变引起的。通常几何刚度要比弹性刚度大得多,所以要使每一个膜片具有良好的刚度,就应尽量形成负高斯曲面,即沿对角方向分别形成“高点”和“低点”。“高点”通常是由桅杆来提供的,也许是由于这个原因,有些文献上也把张拉膜结构叫做悬挂膜结构(suspension membrane)。

索作为膜材的弹性边界,将膜材划分为一系列膜片,从而减小了膜材的自由支承长度,使薄膜表面更易形成较大的曲率。有文献指出,膜材的自由支承长度不宜超过15米,且单片膜的覆盖面积不宜大于500平米。此外,索的另一个重要作用就是对桅杆等支承结构提供附加支撑,从而保证不会因膜材的破损而造成支承结构的倒塌。

膜结构设计主要包括以下内容:
1,初始态分析:确保生成形状稳定、应力分布均匀的三维平衡曲面,并能够抵抗各种可能的荷载工况;这是一个反复修正的过程。
2,荷载态分析:张拉膜结构自身重量很轻,仅为钢结构的1/5,混凝土结构的1/40;因此膜结构对地震力有良好的适应性,而对风的作用较为敏感。此外还要考虑雪荷载和活荷载的作用。由于目前观测资料尚少,故对膜结构的设计通常采用安全系数法。
3,主要结构构件尺寸的确定,及对支承结构的有限元分析。当支承结构的设计方法与膜结构不同时,应注意不同设计方法间的系数转换。
4,连接设计:包括螺栓、焊缝和次要构件尺寸。
5,剪裁设计:这一过程应具备必要的试验数据,包括所选用膜材的杨氏模量和剪裁补偿值(应通过双轴拉伸试验确定)。

膜结构在方案阶段需要考虑的问题有:
1,预张力的大小及张拉方式;
2,根据控制荷载来确定膜片的大小和索的布置方式;
3,考虑膜面及其固定件的形状以避免积水(雪);
4,关键节点的设计,以避免应力集中;
5,考虑膜材的运输和吊装;
6,耐久性与防火考虑。

在膜结构设计阶段所要考虑的要点有:
1,保证膜面有足够的曲率,以获得较大的刚度和美学效果;
2,细化支承结构,以充分表达透明的空间和轻巧的形状;
3,简化膜与支承结构间的连接节点,降低现场施工量。

膜结构研究的主要问题有:
1,找形(Form-finding)或更进一步叫“形态理论”;
2,考虑膜材松弛和各向异性下的结构响应;
3,结构在风荷载作用下的动力稳定性;
4,裁剪优化;
5,膜与索及支承结构间的相互作用。
作者: mibao    时间: 2009-1-2 23:20

张拉膜结构的概念设计
一、从结构方式上大致可分为骨架式、张拉式、充气式膜结构 3种形式海口海洋世界入口膜结构

1.骨架式膜结构(FrameSupportedStructure)以钢构或是集成材构成的屋顶骨架后,在其上方张拉膜材的构造形式,下部支撑结构安定性高,因屋顶造型比较单纯,开口部不易受限制,且经济效益高等特点,广泛适用于任何大,小规模的空间。青岛音乐广场2.张拉式膜结构(TensionSuspensionStruct...... 结构方式上大致可分为骨架式、张拉式、充气式膜结构3种形式海口海洋世界入口膜结构 1.骨架式膜结构(Frame Supported Structure)以钢构或是集成材构成的屋顶骨架后,在其上方张拉膜材的构造形 式,下部支撑结构安定性高,因屋顶造型比较单纯,开口部不易受限制, 且经济效益高等特点,广泛适用于任何大,小规模的空间。 青岛音乐广场 

2.张拉式膜结构(Tension Suspension Structure)  以膜材、钢索及支柱构成,利用钢索与支柱在膜材中导入张力以达安 定的形式。除了可实践具创意,创新且美观的造型外,也是最能展现膜结 构精神的构造形式。 近年来,大型跨距空间也多采用以钢索与压缩材构成 钢索网来支撑上部膜材的形式。因施工精度要求高,结构性能强,且具丰 富的表现力,所以造价略高于骨架式膜结构。 

3.充气式膜结构(Pneumatic Structure)  充气式膜结构是将膜材固定于屋顶结构周边,利用送风系统让室内气 压上升到一定压力后,使屋顶内外产生压力差,以抵抗外力,因利用气压 来支撑,及钢索作为辅助材,无需任何梁,柱支撑,可得更大的空间,施工 快捷,经济效益高,但需维持进行24小时送风机运转,在持续运行及机器 维护费用的成本上较高。 

二、膜材料用于膜结构建筑中的膜材是一种具有强度,柔韧性好的薄膜材料,是由纤维编织成织物基材,在其基材两面以树脂为涂层材所加工固定而成的材料,中心的织物基材分为聚酯纤维及玻璃纤维,而作为涂层材使用的树脂有聚氯乙烯树脂(PVC),硅酮(silicon)及聚四氟乙烯树脂(PTFE),在力学上织物基材及涂层材分别具有影响下列的功能性质。  织物基材——抗拉强度,抗撕裂强度,耐热性,耐久性,防火性。  涂 层 材——耐候性,防污性,加工性,耐水性,耐品,透光性。 

三、膜材的正确选定用于建筑膜结构的膜材,依涂层材不同大致可分为PVC膜与PTEF膜,膜材的正确选定应考虑其建筑的规模大小、用途、形式,使用年限及预算等综合因素后决定。 PVC膜(PVC-Coated Polyester) PVC膜材在材料及加工上都比PTFE膜便宜,且具有材质柔软,易施工的优点。但在强度、耐用年限、防火性等性能上较PTFE膜差。PVC膜材是由聚脂纤维织物加上PVC涂层(聚氯乙烯)而成,一般建筑用的膜材,是在PVC涂层材的表面处理上,涂以数micron厚的压克力树脂(acrylic),以改善防污性。但是,经过数年之后就会变色、污损、劣化。一般PVC膜的耐用年限,依使用环境不同在5~8年。为了改善PVC膜材的耐侯性,近年来已研发出以氟素系树脂于PVC涂层材的表面处理上做涂层,以改善其耐侯性及防污性的膜材。 PVDF PVDF是二氟化树脂(Polyvinylidene Fluoride)的略称,在PVC膜表面处理上加以PVDF树脂涂层的材料称为PVDF膜。PVDF膜与一般的PVC膜比较,耐用年限改善至7~10年左右。 PVF PVF是一氟化树脂(Polyvinyl Fluoride)的略称。PVF膜材是在PVC膜的表面处理上以PVF树脂做薄膜状薄片(laminate)加工,比PVDF膜的耐久性更佳,更具有防沾污的优点。但因为加工性、施工性与防火性都不佳,所以使用用途受到限制。 PTFE膜(PTFE Coated Fiberglass)  PTFE膜是在超细玻璃纤维织物上,涂以聚四氟乙烯树脂而成的材料。PTFE膜最大的特微就是耐久性、防火性与防污性高。但PTFE膜与PVC膜比较,材料费与加工费高,且柔软性低,在施工上为避免玻璃纤维被折断,须有专用治工具与施工技术。  耐久性:涂层材的PTFE对酸、硷等化学物质及紫外线非常安定,不易发生变色或破裂。玻璃纤维在经长期使用后,不会引起强      度劣化或张力减低。膜材颜色一般为白色、透光率高,耐久性在25年以上。  防污性:因涂层材为聚四氟乙烯树脂,表面摩擦系数低,所以不易污染,可藉由雨水洗净。 防火性:PTFE膜符合近所有国家的防火材料试验合格的特性,可替代其它的屋顶材料做同等的使用用途。 四、工程应用体育设施—体育场馆、健身中心等交通设施—机场、火车站、公交车站、高速公路收费站、加油站等文化设施—展览/会议中心、剧场、博物馆、动物园、水族馆等景观设施—建筑入口、泳池小品、小区长廊、户外广场、公园小品、标识性建筑等商业设施—购物中心、餐厅、步行街等工业设施—工厂、仓库污水处理中心
作者: mibao    时间: 2009-1-2 23:24

膜结构的形状确定

  2.1 形状确定的概念

  膜结构的形状确定问题就是确定初始状态的问题,在许多专著上被称为“找形”(Form Finding)。膜结构的形状确定问题有两种类型:

  (1)给定预应力分布的形状确定问题:预先假定膜结构中应力的分布情况,在根据受力合理或经济原则进行分析计算,以得到膜的初始几何状态。

  (2)给定几何边界条件的形状确定问题:预先确定膜结构的几何边界条件,然后计算分析预应力分布和空间形状。

  肥皂泡就是最合理的自然找形的膜结构。最初的找形正是通过皂膜比拟来进行,后来发展到用其他弹性材料做模型,通过测量模型的空间坐标来确定形状,对于简单的外形也可以用几何分析法来确定,膜结构找形技术的真正发展来自计算机有限元分析方法的发展。为了寻求膜结构的合理的几何外形,需要通过计算机的多次迭代才能得到。

  常用的计算机找形方法有:力密度法、动力松弛法、有限元法。

  2.2力密度法

  索网结构中拉力与索长度的比值定义为力密度(Force Density)。力密度法(Force Density Method)是由Linkwitz 及 Schek提出来的,原先只是用于索网结构的找形,将膜离散为等代索网,后来,该方法被用于膜结构的找形。把等代为索的膜结构看成是由索段通过结点相连而成,通过指定索段的力密度,建立并求解结点的平衡方程,可得各自由结点的坐标。

  不同的力密度值,对应不同的外形。当外形符合要求时,由相应的力密度即可求得相应的预应力分布值。力密度法也可以用于求解最小曲面,最小曲面时膜内应力处处相等,肥皂膜就是最好的最小曲面的例子。实际上的最小曲面无法用计算机数值计算方法得到,所以工程上常采用指定误差来得到可接受的较小曲面。

  力密度法的优点是只需求解线性方程组,其精度一般能满足工程要求。用力密度法找形的软件有德国 EASY(EasyForm)、意大利Forten32、新加坡WinFabric等。

  2.3 动力松弛法

  动力松弛法( Dynamic Relaxation Method )是一种专门求解非线性系统平衡状态的数值方法,他可以从任意假定的不平衡状态开始迭代得到平衡状态,最早将这种方法用于索网结构的是 Day 和 Bunce,而 Barnes 则成功地应用于膜结构的找形。

  力密度法只是从空间上将膜离散化,而动力松弛法从空间和时间两方面将膜结构体系离散化。空间上的离散化是将结构体系离散为单元和结点,并假定其质量集中于结点上。时间上的离散化,是针对结点的振动过程而言的。初始状态的结点在激振力作用下开始振动,这时跟踪体系的动能;当体系的动能达到极值时,将结点速度设置为零,跟踪过程重新开始,直到不平衡力为极小,达到新的平衡为止。

  动力松弛法最大特点是迭代过程中不需要形成刚度矩阵,节约了刚度矩阵的形成和分解时间,并可在计算过程中修改结构的拓扑和边界条件,该方法用于求解给定边界条件下的平衡曲面。其缺点是迭代步骤往往很多。用动力松弛法找形的软件有英国InTENS、新加坡WinFabric、英国Suface等。

  2.4 有限单元法

  有限单元法(Finite Element Method)最初是用来计算索网结构的非线性迭代方法,但现在已成为较普遍的索膜结构找形方法。其基本算法有两种,即从初始几何开始迭代和从平面状态开始迭代。显然,从初始几何开始迭代找形要比从平面状态开始来得有效,且所选用的初始几何越是接近平衡状态,计算收敛越快,但初始几何的选择并非容易之事。两种算法中均需要给定初始预应力的分布及数值。在用有限元法找形时,通常采用小杨氏模量或者干脆略去刚度矩阵中的线性部分,外荷载在此阶段也忽略。

  有限元迭代过程中,单元的应力将发生改变。求得的形状除了要满足平衡外,还希望应力分布均匀,大小合适,以保证结构具有足够的刚度。因此,找形过程中还有个曲面病态判别和修改的问题,或者叫形态优化(包括几何形态优化、应力形态优化和刚度形态优化等)。用有限元法找形的软件有澳大利亚FABDES等。

  经过找形确定的结构初始形状满足了初应力平衡条件并达到预想的形状,但其是否满足使用的要求,还必须进行荷载效应分析。
作者: mibao    时间: 2009-1-2 23:25

膜结构的裁剪分析

  4.1 裁剪分析的内容

  上面已经提到,膜结构的分析包括三大方面内容,即形状确定(Form Finding)、荷载分析(Loading Case Analysis)和裁剪分析(Cutting Pattern)。裁剪分析,就是将由找形得到并经荷载分析复核的空间曲面,转换成无应力的平面下料图。裁剪分析包含三个步骤:

  (1)空间膜面剖分成空间膜条

  膜结构是通过结构来表现造型,空间膜面在剖分成膜条时,要充分考虑膜条的边线即热合缝对美观的影响;同时膜材是正交异性材料,为使其受力性能最佳,应保证织物的经、 纬方向与曲面上的主应力方向尽可能一致;此外,用料最省、缝线最短,也是进行膜面剖分必须考虑的因素。

  (2)空间膜条展开成平面膜片

  空间膜条展开成平面膜片,即将膜条的三维数据转化成相应的二维数据,采用几何方法,简单可行。但如果膜条本身是个不可展曲面,就得将膜条再剖分成多个单元,采用适当的方法将其展开。此展开过程是近似的,为保证相邻单元拼接协调,展开时要使得单元边长的变化为极小。

  (3)应力状态转化到无应力状态

  从应力状态到无应力状态的转化,即释放预应力、进行应变补偿。膜结构是在预应力状态下工作的,而平面膜材的下料是在无应力状态下进行的,为确定膜材的下料图,需对膜片释放预应力,并进行应变补偿。这里的补偿实际上是缩减,在此基础上加上热合缝的宽度,即可得膜材的下料图。

  上述过程,即为裁剪分析。

  4.2 测地线裁剪法

  裁剪分析与找形技术的产生及发展过程极为相似,都是从测量实物模型开始的,对于简单规则的可展曲面,可直接利用几何方法将其展开。现代概念上的裁剪分析,主要还是依赖于计算机技术的发展而发展的。在此过程中,产生了许多方法,如测地线法、有限元法、优化分析法,等等。下面介绍被广泛应用的测地线法 (Geodesic Line Method) 。

  测地线又称短程线,是大地测量学的概念,其通常被理解为:经过曲面上两点并存在于曲面上的最短的曲线。所以用测地线作裁剪分析,就是以测地线来剖分空间膜面。这样做的好处是热合缝最短、用料较省,但热合缝的分布及材料经、纬方向的考虑不易把握。

  求曲面上的测地线的问题,实际上是一个求曲面上两点间曲线长度之泛函极值的问题。由于膜结构几何外形的新奇多变,也就无法得到曲面上两点间曲线长度的泛函的显式,所以通常是求极值确定测地线上的若干点,再用线性插值的方法求中间点,从而求得测地线。

  有了测地线就可以确定裁剪线:直接以测地线为裁剪线或从一条测地线向另一条测地线作垂线,以垂线中点的连线作为裁剪线。

  4.3 应变补偿

  膜结构是在预张力作用下工作的,而膜材的裁剪下料是在无应力状态下进行的,因而在确定裁剪式样时,有一个对膜材释放预应力、进行应变补偿的问题。影响膜材应变补偿率的因素可归纳为以下几个方面:

  (1)膜面的预应力值及膜材的弹性模量和泊松比,这是影响应变补偿率的最直接因素。

  (2)主应力方向与膜材经、纬向纤维间的夹角,这一问题变的重要是因为膜材是正交异性材料。

  (3)热合缝及补强层,热合缝及补强层的性能不同于单层膜,其应变补偿应区别对待。

  (4)环境温度及材料的热应变性能,尤其是双层膜结构环境温度相差较大时,要特别注意。

  在荷载分析中,在每一荷载增量步中对所有的单元进行逐一判别,如发现褶皱单元,可按以下方法处理:

  (1)修改单元刚度:减小褶皱单元对结构总体刚度的贡献,即修改褶皱单元的刚度矩阵,从而减小自身的实际荷载分担,结果是增加了相临单元的负担。

  (2)修改结构刚度:回到找形阶段,对曲面进行修正,即通过修改局部区域的边界条件或调整预应力的方法来修正结构的刚度。

  常用的膜结构几何非线性荷载分析软件有:美国ANSYS,德国 EASY(EasyScan)、意大利Forten32、新加坡WinFabric,英国InTENS等等。
作者: mibao    时间: 2009-1-2 23:25

膜结构的细部设计的内容及做法
1. 几何外形的优化与确认
在经过方案建议,方案明确及招标投标阶段后,中标的膜结构公司要进行膜结构的施工图设计.
施工图设计的首项任务就是几何外形的优化与确认.
1.1 影响几何形状的参数确定
进入施工图设计阶段,需要在中标方案的基础上确定以下与膜面几何形状有关的参数:膜面分区及
膜布经,纬分布方向,各找形基准点的空间坐标,伞形膜结构伞顶的具体位置及帽圈的大小,边索以及
其它与膜面形状相关的加强索,脊索和谷索的具体位置及其相应的弧度,膜面的应力分布及大小等.
虽然膜结构可以形成大面积的覆盖空间,从方便膜面加工制作及安装的角度来看,大覆盖面积的膜
结构应进行适当的分区,以减小单片膜面的面积.将膜面分区划块的另一个好处是万一以后发生膜材撕
裂的情况,要拆卸下来修补或更换,操作比较方便.复杂曲面的膜面是由简单曲面组合而成的.对复杂
造型的膜面进行分区时要考虑其曲面变化,排水安排及支承结构体系等因素.
柔性边界膜结构的找形基准点即膜角节点板的位置所在,与膜和支承结构的连接点位置及连接件的
尺寸关系密切,应在查看有关图纸并经现场实际考察后,根据具体情况确定.
伞顶的位置影响到膜面的形状,帽圈的大小直接关系到伞顶处膜的应力大小和膜面焊接制作时的难
易程度.为避免膜面应力在伞顶处过于集中及防止热合线过于密集,帽圈的尺寸不宜过小.
与膜面相连的索如边索,加强索,脊谷索等的弧度不仅影响到膜面的形状与覆盖面积,对索的内力
影响也非常明显.同时,边索的弧度还影响到膜角点处膜布的宽度及节点板边线的夹角.工程应用上一
般取边索弧形的矢跨比在 1/10左右.
膜面的应力分布及大小,不仅影响到找形所得的形状,还关系到结构张成后的刚度.确定膜面应力
时要考虑到所用膜材料的性能,张拉方法及实际张拉的难易程度.
1.2 膜面外形的优化与确认
在确定了与几何形状相关的上述参数后,需重新生成膜面形状,并对膜面进行荷载态分析;检查
膜面是否有应力过于集中,变形过大,以及是否会出现积水积雪等现象,进行必要的修改和优化.
形状的修改,优化,需得到建筑师和业主的确认,并通报其它专业工种,以便协调,配合.
2. 柔性边界膜结构的结构体系设计
支承结构体系自身的稳定性
在膜结构中,膜是主要受力构件之一.尽管如此,膜结构的支承体系仍应满足其自身稳定性的要
求.以图2 所示的膜结构为例,为适应风载作用下的大变形,中间的桅杆底部做成铰接;虽然在张拉
完成后,膜面及其边索与桅杆可组成结构体系,在桅杆顶部还是设置适当的拉索以保证支承体系自身的
稳定性.这主要有两方面的考虑:一是为了在张拉膜面时,支承体系已经成型,以方便把握各控制点的
空间位置及对膜面实施张拉;二是为了防止万一发生膜材撕裂,不至于引起结构整体倒塌的严重事故,
更换膜面时施工也比较方便.如受条件所限不设稳定索时,宜将中柱设计成底部刚接的格构柱,确保中
柱的稳定
作者: mibao    时间: 2009-1-2 23:26

张拉索膜结构体系及其施工技术  
膜结构是指积极地利用膜状材料,并在结构及建筑设计上充分体现膜结构特点的结构形式。膜结构起始于远古时代游牧民族以兽皮做顶、树枝做柱所搭建的帐篷,进入近代社会以来,人们利用类似的原理,制作临时性的设施,如行军野营用的帐篷等。当时的屋面材料仅为一些做了简单防水处理的织物,在强度、稳定性以及耐久性等方面均难以达到永久建筑的要求。上世纪50-60年代,随着化学工业的飞建发展,加工复合材料工艺的进步,使作为屋顶使用的膜材的综合性能得以改善和提高,为这一新兴建筑形式的流行打下了良好的物质基础。同时,随着社会发展和生活水平提高,人们希望突破传统建筑结构形式和风格的局限,膜结构以其新颖独特的建筑造型顺应了人们的这一愿望。
  现代膜结构工程是集建筑学、结构力学、化工学、材料学及计算机学为一体的高科技工程”,。由于它独特的性能和强烈的视觉冲击效果,很快被人们所接受,并出现了不可阻挡的发展态势。膜结构建筑适用范围很广,可用于体育建筑、展览建筑、娱乐建筑、演出建筑、机场建筑及各类海滨娱乐休闲建筑及设施。

  1 膜结构分类

  从结构形式上膜结构建筑可简单地概括为充气式、骨架式和张拉式三大类口。
  1.1 充气式膜结构(Air Supported Membrane Structure)
  充气式膜结构是依靠膜曲面内外气压差来维持膜曲面的形状。这种索膜建筑历史较长,但因在使用功能上明显的局限性(如形象单一、空间要求气闭等),使其应用面较窄;但充气式索膜体系造价较低,施工速度快,在特定的条件下又有明显优势。1970年日本大阪万国博览会的美国馆,采用的就是这种结构,它标志着膜结构的开始。
  1.2 骨架式膜结构(Framework Membrane Structure)
  骨架式索膜建筑常在某些特定的建筑中被采用,是由于其结构形式本身的局限性(骨架体系自平衡,膜体仅为辅助物,使膜体强度高的特点发挥不足等);而骨架形式与张拉形式的结合运用,常可取得更富于变化的建筑效果。骨架式索膜体系建筑表现含蓄,结构性能有一定的局限性,造价低于张拉式体系。1996年亚特兰大奥运会主体育馆(佐治亚穹顶)为这类结构的典型工程。
  1.3 张拉式索膜结构(Tensioned Cable-Membrane Structure)
  张拉式索膜建筑可谓索膜建筑的精华和代表。张拉索膜结构中膜曲面通过预应力维持自身形状,膜既是建筑物的圈护体又作为结构来抵抗外部荷载效应。由于其建筑形象的可塑性和结构形式的高度灵活性和适应性,该结构形式的应用极其广泛。张拉式索膜结构又可分为索网式、脊谷式等。这种体系富于表现力,结构性能强,但造价稍高,施工精度要求也高。这类工程最典型的是美国丹佛机场候机大楼。

  2 张拉索膜结构体系

  张拉式索膜结构体系由膜体(膜材)、张拉索(边索、谷索、脊索和拉地索)、支承结构、锚固体系及各部分之间的连接节点等组成。
  2.1 膜材
  膜材是由高强度的织物基材加上聚合物涂层构成的复合材料。膜材根据基材和表面涂层的不同,一般分为三大类:A种膜材(玻璃纤维基材、PTFE涂层)、B种膜材(玻璃纤维基材、硅酮涂层)、C种膜材(聚酯长丝基材、PVC涂层)。其中A种膜材多用于美洲和日本,C种膜材在欧洲较为常见,而B种膜材由于其自身性能等原因很少采用。
  2.2索
  常见膜结构中所用的索有钢丝等。根据索所处的位置和功能的不同可将索分为边索、谷索、脊索和拉地索。
  2.3支承结构
  膜结构都是支承在一定的结构体系上。根据支承条件不同可将索膜结构支承体系分为三大类:刚性支承体系、柔性支承体系和混合支承体系。由于膜结构靠结构内的预应力来形成建筑的造型,故对支承结构的安装精度要求较高。在膜结构吊装前,须根据规范和设计要求对支承结构进行复测,并做复测纪录。
  2.4锚固体系
  属于自平衡体系的索膜结构,其索和膜的预应力是由边界结构构件来承受的,而非自平衡结构是通过抗拉锚固体系传递抵抗索拉应力效应的。抗拉锚固体系可分为以下几类:重力锚固体系、抗拔桩锚固体系、阻力锚固体系(板式、蘑菇式、挡土墙式)、摩擦锚固体系和岩石锚固体系等。
  2.5 节点
  膜结构的连接包括膜节点、膜边界、膜角点、膜脊和膜谷。膜节点是指膜裁剪片之间的连接,膜边界是指膜材与支承结构之间的连接,膜角点是指膜边界交汇的点,膜脊和膜谷是指支承结构最高和最低处膜的连接。节点设计是膜结构设计不可缺少的一部分,设计节点时不仅要考虑节点的功能要求,还应该满足美观的需要,且作为屋面节点还应该有良好的防水性能。
  
  3 张拉膜结构施工技术

  3.1 膜材裁剪、包装及运输
  索膜结构体形通常都较为复杂,各种角度变化较多,且加工精度要求非常高。在制作过程中要加强质量管理,保证制作精度。在膜结构制作前,需要对工程所用膜材及配件按设计和规范要求进行材质和力学性能检验,如膜材的双向拉伸试验。膜材加工制作要严格按设计图纸在专业车间由专业人员制作。由于索膜结构通常均为空间曲面,裁剪就是用平面膜材表示空间曲面。这种用平面膜材拟合空间曲面的方法必然存在误差,所以裁剪人员在膜材裁剪加工过程中加入一些补救措施是相当必要的。对已裁剪的膜片要分别进行尺寸复测和编号,并详细纪录实测偏差值。裁剪作业过程中应尽量避免膜体折叠和弯曲,以免膜体产生弯曲和折叠损伤而使膜面褶皱,影响建筑美观。膜片下料完成后再根据排水方向和膜片连接节点确定热熔合方案。在正式热合加工前,要进行焊接试验,确保焊接处强度不低于母材强度。
  经检验合格的成品膜体,在包装前,应根据膜体特性、施工方案等确定完善的包装方案。如聚四氟乙烯为涂层的是玻璃纤维为基层的膜材料可以以卷的方式包装,其中卷芯直径不得小于100mm,对于无法卷成筒的膜体可以在膜体内衬填软质填充物,然后折叠包装。包装完成后,在膜体外包装上标记包装内容、使用部位及膜体折叠与展开方向。在膜材运输过程中要尽量避免重压、弯折和损坏。同时在运输时也要充分考虑安装次序,尽量将膜体一次运送到位,避免膜体在场内的二次运输,减少膜体受损的机会。
  膜材加工制作工艺漉程为:膜裁剪出图→审图→膜加工技术交底→检验→放样→裁剪→膜材预拼装→膜材热熔合→边缘加工→成型尺寸复核→清洗→包装→出厂。
  3.2 支承结构安装
  张拉索膜结构的支承可分为刚性边界和柔性边界。支承结构安装误差的大小,不仅直接影响建筑的外观,还影响结构内预应力的分布,严重者将影响结构的安全性。在安装支承钢结构前,应按规范和设计要求对钢结构基础的顶面标高、轴线尺寸做严格的复测,并作复测纪录。
支承结构安装工艺流程为:钢结构预埋交底→钢结构预埋→钢结构制作→基础预埋复核→构件防腐涂装→构件防火涂装→构件吊装。
  3.3膜体安装
  3.3.1 准备工作
  膜体进场安装前,应组织项目有关人员对施工方案进行评审,确定详细的安装作业与安全技术措施。先复核支承结构的各个尺寸,使每个控制点的安装误差均在设计和规范允许的范围内;对膜体及配件的出厂证明、产品质量保证书、检测报告及品种、规格、数量进行验收;检查膜体外观是否有破损、褶皱,热熔合缝是否有脱落,螺栓、铝合金压条、不锈钢压条有无拉伤或锈蚀,索和锚具涂层是否破坏。
  在组织验收构件的同时,还应根据场地条件和施工方案搭设膜体展开平台,安装安全网。对大型的张拉膜结构,要收集安装期间的气象信息。安装过程中要密切注意风向和风速,避免膜体发生颤动现象。在强风或大雨天气要及时停止施工,并采取相应的安全防护措施。
作者: mibao    时间: 2009-1-2 23:27

膜体安装包括膜体展开、连接固定、吊装到位和张拉成形
膜体安装包括膜体展开、连接固定、吊装到位和张拉成形四个部分。
  (1) 展开膜体前,在平台上铺设临时布料,以保护膜材不被损伤及膜材清洁,严格按确定的顺序展开膜体。打开包装前应校对包装上的标记,确认安装部位,并按标记方向展开,尽量避免展开后的膜体在场内移动。在展开的膜面上行走时要穿软底鞋,不得佩带硬物,以防膜体受到刮伤。
  (2) 在平台上展开膜体后,用夹板将膜材与索连接固定。夹板的规格及夹板间的间距均应该严格按设计要求安装。对一次性吊装到位的膜体,也必须一次将夹板螺栓、螺母拧紧到位。
  (3) 目前索膜结构吊装较多应用多点整体提升法,是将已经成熟的整体“提升”技术加以改造用于索膜结构这种柔性结构的施工过程中,该工艺要求整个过程必须同步。起吊过程中控制各吊点的上升速度和距离,确保膜面的传力均匀。
  亦可采用分块吊装的方法,将膜体按平面位置分为若干作业块,每块膜体同样采用多点整体吊装技术,整体吊装到位。若采用整体提升技术,要求投入的设备和人员较多,施工准备期较长。采用分块吊装法将整个膜体分为5个作业块,第1片和第2片、第3片和第4片、第5片和第6片、第7片和第8片、第9片和第10片,每个作业块膜体的7个吊点同时提升。待所有膜体均到达设计高度后,再在空中将各个作业块连接到一起,其优越性相当明显。在整个安装过程中要特别注意防止膜体在风荷载作用下产生过大的晃动。
  (4) 张拉成型是整个膜结构工程施工的重要环节,施工项目能否取得效果,取决于张拉是否满足设计要求。当支承结构为刚性边界时,预应力的施加要通过特殊的构造来实施。对于柔性边界,可通过调整撑杆的位置来调节预应力的大小。张拉索膜结构中,膜材的张拉预应力是靠索提供的。整个张拉过程实际就是将各种索按照预定的应力张拉到位。张拉时应确定分批张拉的顺序、量值,控制张拉速度,并根据材料的特性确定超张拉量值。张拉过程可以是分批、分级调整索的预应力,逐步张拉达到设计值;也可以对整体实施同步张拉。对有控制要求的张力值应作施工纪录,对无控制要求的也要作张拉行程纪录。
  (5) 膜安装工艺流程为:安装方案会审→复核支承结构尺寸→膜安装技术交底→检查安装设备工具是否到位→搭设安装平台→铺设保护布料→展开膜材→连接固定→吊装膜材→调
整索及膜收边→张拉成型→防水处理→清洗膜面→最后检查→交工。
  3.3.3 安装质量要求
膜面无渗漏,无明显褶皱,不得有积水;膜面颜色均匀,无明显污染串色;连接固定节点牢固,排列整齐;缝线无脱落;无超张拉;膜面无大面积拉毛蹭伤。
作者: mibao    时间: 2009-1-2 23:28

4.1 环境:建筑设计越来越注重环境,与整体环境的关系是否和谐早已成为人们评判建筑设计成功与否的关键。索膜建筑在空间和平面布局上的高度灵活性,使其往往与周边环境极其自然地融为一体。有意识地去运用索膜建筑的自由形态以形成空间上聚聚合合、若分若离的多层次变换,是专业索膜建筑师应具备的基本修养。

  4.2 对比与协调:同一般建筑设计一样,“对比与协调”同样是索膜建筑师的“看家宝”。与一般建筑设计不同的是,其对比手法的运用可能更多一些。因为在城市中,大量的建筑形象处于矩形序列的变化之中,而索膜建筑所呈现的技术表现形象却与众不同,它那不加修饰且简洁明丽的动感外观,若加以巧妙运用,则可起到“画龙点睛”和“提气醒神”的效果。 协调的手法也是索膜建筑常用的处理技巧之一,互相衬托、甘居配角常常更能起到良好的烘托作用,使整体效果达到新的高度。

  4.3 “超尺度”的应用:由于索膜建筑本身的结构技术特性,使其本身往往呈现超尺度的建筑表现。运用超尺度的对比达到更高层次的尺度协调是索膜建筑方案设计中常用的手法。

  4.4 色彩与夜景效果的应用:由于PVDF(聚偏氟乙烯膜材表面涂层)以及PTEE(聚四氟乙烯膜材表面涂层)等材料均未妥善解决色彩添加的问题,目前膜材以白色为主。

  索膜建筑的夜景效果异彩纷呈,有明显的“建筑可识别性”和商业效应。膜材本身的透光性和彩色泛光照明的运用,是夜景效果的关键。

  5 索膜建筑设计中建筑与结构的结合

  一般建筑设计中建筑与结构的矛盾在索膜建筑的设计中无可选择地变成了完美的结合。索膜建筑方案实质上也须同时是索膜结构体系方案,方案起始于索膜结构的初步思考。索膜建筑师必须对索膜结构体系有较深刻的理解,明了体系的工作原理。在索膜建筑设计中必须综合考虑:

  1)体系受力是否均匀(可用设计软件进行初步成型检验);

  2)是否能保证体系在预张力的适当控制下(可用设计软件进行初步计算检验);

  3)是否合理选择了预张力施加机构的设置位置及方式,能使预张力顺畅地向各方向传递,保证预张力施加机构正常工作的同时满足视觉和使用功能要求(根据经验与结构工程师反复协商确定);

  4)能否避免过大推力或拉力,以免使相关结构难以承受(可用设计软件进行初步计算并找出最不利反力发生的位置);

  5)是否可使体系各点在最不利荷载下避免产生过大的位移以至影响建筑的正常使用;

  6)各基础及锚座的位置和尺寸是否满足视觉美 学要求和功能使用要求,并应特别注意各拉锚点不致影响人行或车行交通;

  7)是否能保证合理顺畅的排水并合理选择无组织排水或有组织排水方式。索膜建筑的排水坡度要求大于一般建筑(可用设计软件或根据经验加以判断);

  8)从结构受力、加工制作和视觉效果等方面综合考虑膜材焊缝的布置和走向;

  9)考虑关键节点的位置及预张力施加机构的设置位置对建筑整体效果的影响;

  10)考虑索膜边界的构造做法及对建筑整体效果的影响;

  11)保证各节点的防水构造措施合理有效;

  12)适当考虑合理的保温隔热措施,组织有效 的自然通风和排气,最大程度地降低使用能耗。

  从上述各点可明显看出,索膜建筑方案设计的过程实际上与索膜结构方案设计和技术设计不可分割,索膜建筑事业的发展需要大批熟悉索膜建筑设计、了解索膜结构技术并能熟练地加以运用来进行 建筑创作的索膜专业建筑师。如果索膜建筑方案只 能依靠索膜结构工程师或制作商来完成索膜建筑事业必将流于“工匠作坊”的“蹩脚货”,其蓬勃的生命潜质将被湮灭。 从现阶段来讲,非索膜建筑专业建筑师在进行索膜建筑方案设计时,应设法多了解索膜建筑与结 构技术,如条件不具备,则最好在方案期间就尽早与索膜结构专业人员取得联系,以免被动。
作者: mibao    时间: 2009-1-2 23:32

体育场馆膜结构工程是具有大跨度、张拉、大空间、高透光性等优点。非常适合体育场馆、游泳馆、健身中心、训练中心、运动场、网球馆、高尔夫球场等看台、主席台、雨棚、罩棚、遮阳棚、屋面工程场馆、舞台、校区标志性建筑等等建设。

体育场馆膜结构工程的个性美常常体现在形态各异的膜结构工程中获得的.作为21世纪最具代表性的一种全新的建筑形式,膜结构以其造型新颖、质轻透光等优点在体育场馆中得到广泛应用。不仅体现出膜结构的力量美,还充分表现出建筑师的设想,利用各种建筑膜材,在表现传统建筑柔和曲线美的张拉膜结构中,所营造出来崭新的建筑形象与迥然不同的风格,形成了一道道色彩斑斓的风景线。

“水立方”是世界上最大的体育场馆膜结构工程,除了地面之外,外表都采用了膜结构———ETFE建筑膜材,蓝色的表面出乎意料的柔软但又很充实, 成为世界体育场馆膜结构工程中的亮点。

附件: 20090101_746eafa4108854b868edwqppLG5fxDDh.gif (2009-1-2 23:33, 44 K) / 下载次数 1
http://okok.org/attachment.php?aid=106952




欢迎光临 中华钢结构论坛 China Structure Forum (http://okok.org/) Powered by Discuz! 5.0.0