标题:
关于索的局部与整体转换矩阵
[打印本页]
作者:
liuxiaochun
时间:
2003-6-18 23:44
标题:
关于索的局部与整体转换矩阵
若索为二结点单元,在局部坐标下,其结点自由度为1,而在整体坐标下,其结点位移为3,那转换矩阵就是2×6。但在计算几何刚度矩阵时,在局部坐标下是一个6×6的矩阵,那么在向整体坐标转换时没法进行矩阵运算,请问此时该将转换矩阵应作何修正?
局部坐标下几何刚度矩阵如下:
Knl=P/L 【1 0 0 -1 0 0
0 1 0 0 -1 0
0 0 1 0 0 -1
-1 0 0 1 0 0
0 -1 0 0 1 0
0 0 -1 0 0 1】
转换矩阵为:
T=【L m n 0 0 0
0 0 0 L m n】
应该将T矩阵如何变换,才能与Knl相乘得整体坐标下的几何刚度矩阵
作者:
clili
时间:
2004-12-23 16:21
标题:
回复: 关于索的局部与整体转换矩阵
若索为二结点单元,每个结点有3个自由度,总共2×3=6个自由度。所以,在局部坐标和整体坐标系下,几何刚度矩阵都为6×6的矩阵。其转换矩阵也是6×6的矩阵。
作者:
hongbinzhao
时间:
2005-5-26 16:58
标题:
回复: 关于索的局部与整体转换矩阵
首先几何刚度矩阵的局部坐标表达有误,轴向ox不应考虑,因为在弹性刚度矩阵中已经对结构刚度作出了贡献,故Knl应该表达为:
Knl=P/L 【0 0 0 0 0 0
0 1 0 0 -1 0
0 0 1 0 0 -1
0 0 0 0 0 0
0 -1 0 0 1 0
0 0 -1 0 0 1】
而相应的坐标转换矩阵T的表达仅仅通过ox与OX、OY、OZ的方向余弦l,m,n表达是不够的。T 的表达式应该为:
T=【cos(xX) cos(xY) cos(xZ) 0 0 0
cos(yX) cos(yY) cos(zZ) 0 0 0
cos(zX) cos(zY) cos(zZ) 0 0 0
0 0 0 cos(xX) cos(xY) cos(xZ)
0 0 0 cos(yX) cos(yY) cos(zZ)
0 0 0 cos(zX) cos(zY) cos(zZ)】
cos(xX) ,cos(xY), cos(xZ)即为l,m,n,几何含义就不用解释了吧,其中局部坐标系中oy和oz的选取要恰当,这一点在弹性刚度矩阵的转换中不用考虑,仅仅通过T=【L m n 0 0 0
0 0 0 L m n】就可以转换了。
作者:
allenlee
时间:
2005-6-21 12:45
标题:
回复: 关于索的局部与整体转换矩阵
二节点索单元的一个麻烦地方就是从局部坐标到整体坐标的坐标转化,你可以试着采用三节点或者五节点等参元,没有转化这个问题,虽然单元的位移模式矩阵复杂了点,但是整体计算量比较小,同时精度大有提高,我觉得这样处理比较好。
欢迎光临 中华钢结构论坛 China Structure Forum (http://okok.org/)
Powered by Discuz! 5.0.0